

Electrification and Decarbonization

Technical Executive Energy and Environmental Analysis, EPRI

Energy and Climate Seminar, Washington, DC May 10, 2017

Reducing carbon emissions through electrification

- In many cases, replacing fossil fuels with electricity at the end-use results in lower overall carbon emissions
 - Leverage will only increase with tighter constraints on power sector CO2
- Key questions:
 - What are the potential drivers?
 - How much fossil use could be cost-effectively replaced by electricity even without a carbon price?
 - For the remainder, how does carbon pricing change the equation, i.e. how does electrification compare with other mitigation options?
 - In either case, how do we think about adoption and diffusion in the context of consumer behavior?

Potential Drivers of Electrification

- Policy drivers (at federal, state, or local level)
 - Economy-wide carbon incentives
 - Sector-specific targets or mandates
 - Air quality regulations in non-attainment areas
- Non-policy drivers
 - Technological change (e.g., declining battery costs)
 - Fuel markets
 - New business models (e.g., autonomous vehicles, indoor agriculture)
 - Changing rate structures

Final Energy by Sector / End-Use (2014)

* Excludes upstream and midstream energy use, e.g. power generation, oil & gas extraction, refining, and pipelines

Electrification Prospects by Sector

- Transportation
 - Light duty vehicles
 - Heavy duty road vehicles
 - Other
- Buildings
 - Heat pumps for space heating
 - Water heaters / dryers / ranges
- Industry
 - Specialized / low-heat process
 - Boilers / high-heat process
 - Facility energy use

US-REGEN End-Use Model

Light-Duty Vehicles

- Currently EVs and PHEVs have a very small market share but may be on the cusp of much more widespread deployment
 - Technology is moving fast, especially battery costs
 - Autonomous vehicle service could change the landscape dramatically
- Significant customer heterogeneity
 - Urban / Suburban / Rural
 - Low / Medium / High annual mileage
 - Single / multiple car households
 - Attitude / Access to electric charging / ride service
- Model trade-offs including economic and non-economic factors

Electric Vehicle Cost Delta vs Conventional Vehicle

Median consumer type

- \$1,000 ORNL estimates of behavioral costs
 - current fuel prices + $100/tCO_2$

Electric vehicles may not work for all consumer types

Modeling Autonomous Vehicles

Electric Heating in Buildings

- Currently about 1/3 of residential buildings in the US have electricity as the main heat source, according to EIA surveys
 - Concentrated in regions with mild climates / favorable relative fuel prices, e.g. Florida and Pacific NW
 - Higher shares in smaller housing units / recent vintages
 - 25% share of floorspace in commercial buildings
- New opportunities for air source heat pump (ASHP) technology
- We model the economic trade-offs for ASHP vs. conventional furnace (+ A/C) in each region / climate zone based on temperature profile and retail fuel prices

Heating/Cooling Zones based on HDD × CDD

Distribution across US of Electric Heating Cost Premium

ELECTRIC POWER

RESEARCH INSTITUT

Ebb

Higher carbon prices \rightarrow more electric heating in the money

ELECTRIC POWER

RESEARCH INSTITUT

Effect of Electrification on Load Shapes

 As end-use mix changes, relative size of heating and cooling vs. non-seasonal loads will result in potentially very different aggregate profile / alignment with renewables

- New shapes will be introduced, in particular vehicle charging
- Result could improve or exacerbate generation asset utilization
- Better resource integration could allow more flexibility in demand response

¹⁵ *Preliminary: Subject to further calibration*

Key Insights and Ongoing Research

- What is the role of the electric sector along potential pathways for energy system transformation?
 - Significant potential to reduce non-electric fossil fuel use and emissions through increased electric share, especially in vehicles and buildings
 - Some energy applications unlikely to be electrified even with carbon policy incentives, e.g. aviation, heavy industry, heating in cold climates
 - Need to ensure that policies, regulations, and rate structures align incentives for electrification where appropriate
 - First-order electric system impacts: need integrated modeling approach
- National Electrification Assessment: EPRI study \rightarrow Dec 2017

Together...Shaping the Future of Electricity

